When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    A compound pendulum (or physical pendulum) is one where the rod is not massless, and may have extended size; that is, an arbitrarily shaped rigid body swinging by a pivot . In this case the pendulum's period depends on its moment of inertia around the pivot point.

  3. Pendulum - Wikipedia

    en.wikipedia.org/wiki/Pendulum

    In 1673 Huygens had shown that the period of a rigid bar pendulum (called a compound pendulum) was equal to the period of a simple pendulum with a length equal to the distance between the pivot point and a point called the center of oscillation, located under the center of gravity, that depends on the mass distribution along the pendulum. But ...

  4. Elastic pendulum - Wikipedia

    en.wikipedia.org/wiki/Elastic_pendulum

    In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]

  5. Seconds pendulum - Wikipedia

    en.wikipedia.org/wiki/Seconds_pendulum

    A seconds pendulum is a pendulum whose period is precisely two seconds; one second for a swing in one direction and one second for the return swing, a frequency of 0.5 Hz. [ 1 ] Pendulum

  6. Conical pendulum - Wikipedia

    en.wikipedia.org/wiki/Conical_pendulum

    Monumental conical pendulum clock by Farcot, 1878. A conical pendulum consists of a weight (or bob) fixed on the end of a string or rod suspended from a pivot.Its construction is similar to an ordinary pendulum; however, instead of swinging back and forth along a circular arc, the bob of a conical pendulum moves at a constant speed in a circle or ellipse with the string (or rod) tracing out a ...

  7. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    Approximate period of a simple pendulum with small amplitude: T ≈ 2 π L g {\displaystyle T\approx 2\pi {\sqrt {\frac {L}{g}}}} Exact period of a simple pendulum with amplitude θ 0 {\displaystyle \theta _{0}} ( agm {\displaystyle \operatorname {agm} } is the arithmetic–geometric mean ):

  8. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    The period of a mass attached to a pendulum of length l with gravitational acceleration is given by = This shows that the period of oscillation is independent of the amplitude and mass of the pendulum but not of the acceleration due to gravity, g {\displaystyle g} , therefore a pendulum of the same length on the Moon would swing more slowly due ...

  9. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.