Search results
Results From The WOW.Com Content Network
A compound pendulum (or physical pendulum) is one where the rod is not massless, and may have extended size; that is, an arbitrarily shaped rigid body swinging by a pivot . In this case the pendulum's period depends on its moment of inertia around the pivot point.
In 1673 Huygens had shown that the period of a rigid bar pendulum (called a compound pendulum) was equal to the period of a simple pendulum with a length equal to the distance between the pivot point and a point called the center of oscillation, located under the center of gravity, that depends on the mass distribution along the pendulum. But ...
In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]
A seconds pendulum is a pendulum whose period is precisely two seconds; one second for a swing in one direction and one second for the return swing, a frequency of 0.5 Hz. [ 1 ] Pendulum
Monumental conical pendulum clock by Farcot, 1878. A conical pendulum consists of a weight (or bob) fixed on the end of a string or rod suspended from a pivot.Its construction is similar to an ordinary pendulum; however, instead of swinging back and forth along a circular arc, the bob of a conical pendulum moves at a constant speed in a circle or ellipse with the string (or rod) tracing out a ...
Approximate period of a simple pendulum with small amplitude: T ≈ 2 π L g {\displaystyle T\approx 2\pi {\sqrt {\frac {L}{g}}}} Exact period of a simple pendulum with amplitude θ 0 {\displaystyle \theta _{0}} ( agm {\displaystyle \operatorname {agm} } is the arithmetic–geometric mean ):
The period of a mass attached to a pendulum of length l with gravitational acceleration is given by = This shows that the period of oscillation is independent of the amplitude and mass of the pendulum but not of the acceleration due to gravity, g {\displaystyle g} , therefore a pendulum of the same length on the Moon would swing more slowly due ...
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.