When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sodium amide - Wikipedia

    en.wikipedia.org/wiki/Sodium_amide

    Sodium amide can be prepared by the reaction of sodium with ammonia gas, [3] but it is usually prepared by the reaction in liquid ammonia using iron(III) nitrate as a catalyst. The reaction is fastest at the boiling point of the ammonia, c. −33 °C. An electride, [Na(NH 3) 6] + e −, is formed as a reaction intermediate. [4] 2 Na + 2 NH 3 ...

  3. Nucleophilic aromatic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_aromatic...

    A 2019 review argues that such 'concerted S N Ar' reactions are more prevalent than previously assumed. [3] Aryl halides cannot undergo the classic 'backside' S N 2 reaction. The carbon-halogen bond is in the plane of the ring because the carbon atom has a trigonal planar geometry. Backside attack is blocked and this reaction is therefore not ...

  4. Finkelstein reaction - Wikipedia

    en.wikipedia.org/wiki/Finkelstein_reaction

    The classic Finkelstein reaction entails the conversion of an alkyl chloride or an alkyl bromide to an alkyl iodide by treatment with a solution of sodium iodide in acetone. Sodium iodide is soluble in acetone while sodium chloride and sodium bromide are not; [ 3 ] therefore, the reaction is driven toward products by mass action due to the ...

  5. Nucleophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Nucleophilic_substitution

    A graph showing the relative reactivities of the different alkyl halides towards S N 1 and S N 2 reactions (also see Table 1). In 1935, Edward D. Hughes and Sir Christopher Ingold studied nucleophilic substitution reactions of alkyl halides and related compounds. They proposed that there were two main mechanisms at work, both of them competing ...

  6. Metal–halogen exchange - Wikipedia

    en.wikipedia.org/wiki/Metal–halogen_exchange

    Another proposed mechanism involves single electron transfer with the generation of radicals. In reactions of secondary and tertiary alkyllithium and alkyl halides, radical species were detected by EPR spectroscopy. [9] [6] The mechanistic studies of lithium–halogen exchange are complicated by the formation of aggregates of organolithium species.

  7. Gabriel synthesis - Wikipedia

    en.wikipedia.org/wiki/Gabriel_synthesis

    In this method, the sodium or potassium salt of phthalimide is N-alkylated with a primary alkyl halide to give the corresponding N-alkylphthalimide. [8] [9] [10] Upon workup by acidic hydrolysis the primary amine is liberated as the amine salt. [11] Alternatively the workup may be via the Ing–Manske procedure, involving reaction with hydrazine.

  8. Dehalogenation - Wikipedia

    en.wikipedia.org/wiki/Dehalogenation

    The reaction begins with the formation of alkyl/arene-magnesium-halogen compound, followed by addition of proton source to form dehalogenated product. Egorov and his co-workers have reported dehalogenation of benzyl halides using atomic magnesium in 3P state at 600 °C. Toluene and bi-benzyls were produced as the product of the reaction. [9]

  9. Alkenylaluminium compounds - Wikipedia

    en.wikipedia.org/wiki/Alkenylaluminium_compounds

    The coupling of an acetylide and tertiary alkyl halide is an example of a reaction that cannot be accomplished with alkali metal acetylides, which displace halides in an S N 2 fashion. The corresponding alkynylalanes are able to couple to tertiary halides via an S N 1-like mechanism. [4] (11)