Search results
Results From The WOW.Com Content Network
A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.
It states that if f is continuously differentiable, then around most points, the zero set of f looks like graphs of functions pasted together. The points where this is not true are determined by a condition on the derivative of f. The circle, for instance, can be pasted together from the graphs of the two functions ± √ 1 - x 2.
Sigma function: Sums of powers of divisors of a given natural number. Euler's totient function: Number of numbers coprime to (and not bigger than) a given one. Prime-counting function: Number of primes less than or equal to a given number. Partition function: Order-independent count of ways to write a given positive integer as a sum of positive ...
A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing , and the limit = (+) exists. [2] This means that, for every positive real number , there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.
Rolle's theorem is a property of differentiable functions over the real numbers, which are an ordered field. As such, it does not generalize to other fields , but the following corollary does: if a real polynomial factors (has all of its roots) over the real numbers, then its derivative does as well.
In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap . A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain. [1]
Arithmetic function: A function from the positive integers into the complex numbers. Analytic function: Can be defined locally by a convergent power series. Quasi-analytic function: not analytic, but still locally determined by its derivatives at a point. Differentiable function: Has a derivative.
Differentiable functions between two manifolds are needed in order to formulate suitable notions of submanifolds, and other related concepts. If f : M → N is a differentiable function from a differentiable manifold M of dimension m to another differentiable manifold N of dimension n, then the differential of f is a mapping df : TM → TN.