When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    The architecture of vision transformer. An input image is divided into patches, each of which is linearly mapped through a patch embedding layer, before entering a standard Transformer encoder. A vision transformer (ViT) is a transformer designed for computer vision. [1] A ViT decomposes an input image into a series of patches (rather than text ...

  3. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Images Classification 2009 [18] [36] A. Krizhevsky et al. CIFAR-100 Dataset Like CIFAR-10, above, but 100 classes of objects are given. Classes labelled, training set splits created. 60,000 Images Classification 2009 [18] [36] A. Krizhevsky et al. CINIC-10 Dataset A unified contribution of CIFAR-10 and Imagenet with 10 classes, and 3 splits.

  4. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    For computer vision in particular, much progress came from manual feature engineering, such as SIFT features, SURF features, HoG features, bags of visual words, etc. It was a minority position in computer vision that features can be learned directly from data, a position which became dominant after AlexNet.

  5. Image classification - Wikipedia

    en.wikipedia.org/?title=Image_classification&...

    This page was last edited on 20 May 2023, at 05:11 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  7. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model [1] [2] can be applied to image classification or retrieval, by treating image features as words. In document classification , a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary.

  8. Image registration - Wikipedia

    en.wikipedia.org/wiki/Image_registration

    Image registration or image alignment algorithms can be classified into intensity-based and feature-based. [3] One of the images is referred to as the moving or source and the others are referred to as the target, fixed or sensed images. Image registration involves spatially transforming the source/moving image(s) to align with the target image.

  9. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [2]

  1. Related searches image classification with vision transformer theory pdf book 2 edition release

    vision transformer architecture pdfvision transformer encoder
    visual transformer architecture