Search results
Results From The WOW.Com Content Network
As explained above, he introduced the so-called "transverse electromagnetic mass" besides the "longitudinal electromagnetic mass", and argued that the entire electron mass is of electromagnetic origin. [A 6] [A 7] [11] [12] [13] Meanwhile, Lorentz (1899, 1904) extended his theory of electrons, assuming that an electron's charge was spread ...
Second, the inherent rotation, or spin, of the electron has a spin magnetic moment. In the Bohr model of the atom, for an electron that is in the orbit of lowest energy, its orbital angular momentum has magnitude equal to the reduced Planck constant, denoted ħ. The Bohr magneton is the magnitude of the magnetic dipole moment of an electron ...
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
Magnets exert forces and torques on each other through the interaction of their magnetic fields.The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the mater
The forces we experience when "pushing" or "pulling" ordinary material objects result from intermolecular forces between individual molecules in our bodies and in the objects. The effective forces generated by the momentum of electrons' movement is a necessary part of understanding atomic and intermolecular interactions.
When the special case of the electromagnetic self-energy or self-force of charged particles is discussed, also in modern texts some sort of "effective" electromagnetic mass is sometimes introduced – not as an explanation of mass per se, but in addition to the ordinary mass of bodies. [B 6] Many different reformulations of the Abraham ...
The invariant mass of an electron is approximately 9.109 × 10 −31 kg, [80] or 5.489 × 10 −4 Da. Due to mass–energy equivalence, this corresponds to a rest energy of 0.511 MeV (8.19 × 10 −14 J). The ratio between the mass of a proton and that of an electron is about 1836.
All experiments to date agree with the Standard Model of the electron, with no substructure, ring-like or otherwise. The two major approaches are high-energy electron–positron scattering [25] and high-precision atomic tests of quantum electrodynamics, [26] both of which agree that the electron is point-like at resolutions down to 10 −20 m.