Search results
Results From The WOW.Com Content Network
An example of a function which is convex but not strictly convex is (,) = +. This function is not strictly convex because any two points sharing an x coordinate will have a straight line between them, while any two points NOT sharing an x coordinate will have a greater value of the function than the points between them.
In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, the boundaries of convex sets, and the graphs of convex functions.
Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets , often with applications in convex minimization , a subdomain of optimization theory .
For every proper convex function : [,], there exist some and such that ()for every .. The sum of two proper convex functions is convex, but not necessarily proper. [4] For instance if the sets and are non-empty convex sets in the vector space, then the characteristic functions and are proper convex functions, but if = then + is identically equal to +.
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
If : is a continuous function and is open, then is closed if and only if it converges to along every sequence converging to a boundary point of . [ 2 ] A closed proper convex function f is the pointwise supremum of the collection of all affine functions h such that h ≤ f (called the affine minorants of f ).
Convex polygon, a polygon which encloses a convex set of points; Convex polytope, a polytope with a convex set of points; Convex metric space, a generalization of the convexity notion in abstract metric spaces; Convex function, when the line segment between any two points on the graph of the function lies above or on the graph
p-adic function: a function whose domain is p-adic. Linear function; also affine function. Convex function: line segment between any two points on the graph lies above the graph. Also concave function. Arithmetic function: A function from the positive integers into the complex numbers. Analytic function: Can be defined locally by a convergent ...