When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    A block diagram of a PID controller in a feedback loop. r(t) is the desired process variable (PV) or setpoint (SP), and y(t) is the measured PV. The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal ...

  3. OBD-II PIDs - Wikipedia

    en.wikipedia.org/wiki/OBD-II_PIDs

    The vehicle responds to the PID query on the CAN bus with message IDs that depend on which module responded. Typically the engine or main ECU responds at ID 7E8h. Other modules, like the hybrid controller or battery controller in a Prius, respond at 07E9h, 07EAh, 07EBh, etc. These are 8h higher than the physical address the module responds to.

  4. Guidance, navigation, and control - Wikipedia

    en.wikipedia.org/wiki/Guidance,_navigation,_and...

    Guidance, navigation and control (abbreviated GNC, GN&C, or G&C) is a branch of engineering dealing with the design of systems to control the movement of vehicles, especially, automobiles, ships, aircraft, and spacecraft. In many cases these functions can be performed by trained humans.

  5. Piping and instrumentation diagram - Wikipedia

    en.wikipedia.org/wiki/Piping_and_instrumentation...

    A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows: A diagram which shows the interconnection of process equipment and the instrumentation used to control the process. In the process industry, a standard set of symbols is used to prepare drawings of processes.

  6. Automation - Wikipedia

    en.wikipedia.org/wiki/Automation

    A block diagram of a PID controller in a feedback loop, where r(t) is the desired process value or "set point", and y(t) is the measured process value. A proportional–integral–derivative controller (PID controller) is a control loop feedback mechanism widely used in industrial control systems.

  7. ArduPilot - Wikipedia

    en.wikipedia.org/wiki/Ardupilot

    BlueROV2 diving with ArduSub. The ArduPilot software suite consists of navigation software (typically referred to as firmware when it is compiled to binary form for microcontroller hardware targets) running on the vehicle (either Copter, Plane, Rover, AntennaTracker, or Sub), along with ground station controlling software including Mission Planner, APM Planner, QGroundControl, MavProxy, Tower ...

  8. Active disturbance rejection control - Wikipedia

    en.wikipedia.org/wiki/Active_Disturbance...

    In particular, the precise control of brushless motors for joint motion is vital in high-speed industrial robot applications. However, flexible robot structures can introduce unwanted vibrations, challenging PID controllers. ADRC offers a solution by real-time disturbance estimation and compensation, without needing a detailed model. [6]

  9. Inverted pendulum - Wikipedia

    en.wikipedia.org/wiki/Inverted_pendulum

    The inverted pendulum is a classic problem in dynamics and control theory and is widely used as a benchmark for testing control algorithms (PID controllers, state-space representation, neural networks, fuzzy control, genetic algorithms, etc.). Variations on this problem include multiple links, allowing the motion of the cart to be commanded ...