Search results
Results From The WOW.Com Content Network
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
The most convincing proof of explosive nucleosynthesis in supernovae occurred in 1987 when those gamma-ray lines were detected emerging from supernova 1987A. Gamma-ray lines identifying 56 Co and 57 Co nuclei, whose half-lives limit their age to about a year, proved that their radioactive cobalt parents created them.
There are three natural candidate sites for r-process nucleosynthesis where the required conditions are thought to exist: low-mass supernovae, Type II supernovae, and neutron star mergers. [15] Immediately after the severe compression of electrons in a Type II supernova, beta-minus decay is blocked.
The s-process is believed to occur mostly in asymptotic giant branch stars, seeded by iron nuclei left by a supernova during a previous generation of stars. In contrast to the r-process which is believed to occur over time scales of seconds in explosive environments, the s-process is believed to occur over time scales of thousands of years, passing decades between neutron captures.
This final burning in massive stars, called explosive nucleosynthesis or supernova nucleosynthesis, is the final epoch of stellar nucleosynthesis. A stimulus to the development of the theory of nucleosynthesis was the discovery of variations in the abundances of elements found in the universe. The need for a physical description was already ...
Neutron capture nucleosynthesis describes two nucleosynthesis pathways: the r-process and the s-process, for rapid and slow neutron captures, respectively. R-process describes neutron capture in a region of high neutron flux , such as during supernova nucleosynthesis after core-collapse, and yields neutron-rich nuclides .
The term p-process (p for proton) is used in two ways in the scientific literature concerning the astrophysical origin of the elements (nucleosynthesis).Originally it referred to a proton capture process which was proposed to be the source of certain, naturally occurring, neutron-deficient isotopes of the elements from selenium to mercury.
The x-process in cosmic rays is the primary means of nucleosynthesis for the five stable isotopes of lithium, beryllium, and boron. [3] As the proton–proton chain reaction cannot proceed beyond 4 He due to the unbound nature of 5 He and 5 Li, [ 4 ] and the triple-alpha process skips over all species between 4 He and 12 C, these elements are ...