Search results
Results From The WOW.Com Content Network
Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and ...
Denjoy-Young-Saks theorem (real analysis) Dini's theorem ; Divergence theorem (vector calculus) Fermat's theorem (stationary points) (real analysis) Fraňková–Helly selection theorem (mathematical analysis) Froda's theorem (mathematical analysis) Fubini's theorem on differentiation (real analysis) Fundamental theorem of calculus
As a consequence of the theorem, opposite angles of cyclic quadrilaterals sum to 180°; conversely, any quadrilateral for which this is true can be inscribed in a circle. As another example, the inscribed angle theorem is the basis for several theorems related to the power of a point with respect to a circle. Further, it allows one to prove ...
In geometry, the hinge theorem (sometimes called the open mouth theorem) states that if two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first triangle is longer than the third side of the second triangle. [1]
See the figures in this article for examples. The three defining points may also identify angles in geometric figures. For example, the angle with vertex A formed by the rays AB and AC (that is, the half-lines from point A through points B and C) is denoted ∠BAC or ^. Where there is no risk of confusion, the angle may sometimes be referred to ...
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
In Euclid's Elements, the first 28 Propositions and Proposition 31 avoid using the parallel postulate, and therefore are valid in absolute geometry.One can also prove in absolute geometry the exterior angle theorem (an exterior angle of a triangle is larger than either of the remote angles), as well as the Saccheri–Legendre theorem, which states that the sum of the measures of the angles in ...
For example, there exist simple algebraic expressions for angle bisectors in terms of the sides of the triangle. Equating two of these expressions and algebraically manipulating the equation results in a product of two factors which equal 0, but only one of them ( a − b ) can equal 0 and the other must be positive.