Search results
Results From The WOW.Com Content Network
[1]: 117 The formula above is known as the Langevin paramagnetic equation. Pierre Curie found an approximation to this law that applies to the relatively high temperatures and low magnetic fields used in his experiments. As temperature increases and magnetic field decreases, the argument of the hyperbolic tangent decreases. In the Curie regime,
The Curie–Weiss law is a simple model derived from a mean-field approximation, this means it works well for the materials temperature, T, much greater than their corresponding Curie temperature, T C, i.e. T ≫ T C; it however fails to describe the magnetic susceptibility, χ, in the immediate vicinity of the Curie point because of ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
To a first order approximation, the temperature dependence of spontaneous magnetization at low temperatures is given by the Bloch T 3/2 law (by Felix Bloch): [1]: 708 = ((/) /), where M(0) is the spontaneous magnetization at absolute zero.
Curie's law is valid under the commonly encountered conditions of low magnetization (μ B H ≲ k B T), but does not apply in the high-field/low-temperature regime where saturation of magnetization occurs (μ B H ≳ k B T) and magnetic dipoles are all aligned with the applied field. When the dipoles are aligned, increasing the external field ...
While some substances obey the Curie law, others obey the Curie-Weiss law. = T c is the Curie temperature. The Curie-Weiss law will apply only when the temperature is well above the Curie temperature. At temperatures below the Curie temperature the substance may become ferromagnetic. More complicated behaviour is observed with the heavier ...
In thermodynamics and thermal physics, the theoretical formulation of magnetic systems entails expressing the behavior of the systems using the Laws of Thermodynamics. Common magnetic systems examined through the lens of Thermodynamics are ferromagnets and paramagnets as well as the ferromagnet to paramagnet phase transition. It is also ...
Coulomb's law: Physics: Charles Augustin de Coulomb: Law of Charles and Gay-Lussac (frequently called Charles's law) Thermodynamics: Jacques Charles and Joseph Louis Gay-Lussac: Clifford's theorem Clifford's circle theorems: Algebraic geometry, Geometry: William Kingdon Clifford: Curie's law: Physics: Pierre Curie: Curie–Weiss law: Physics ...