Search results
Results From The WOW.Com Content Network
Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields. As the ...
The Curie–Weiss law is a simple model derived from a mean-field approximation, this means it works well for the materials temperature, T, much greater than their corresponding Curie temperature, T C, i.e. T ≫ T C; it however fails to describe the magnetic susceptibility, χ, in the immediate vicinity of the Curie point because of ...
Spontaneous magnetization is the appearance of an ordered spin state (magnetization) at zero applied magnetic field in a ferromagnetic or ferrimagnetic material below a critical point called the Curie temperature or T C.
Curie's law is valid under the commonly encountered conditions of low magnetization (μ B H ≲ k B T), but does not apply in the high-field/low-temperature regime where saturation of magnetization occurs (μ B H ≳ k B T) and magnetic dipoles are all aligned with the applied field. When the dipoles are aligned, increasing the external field ...
While some substances obey the Curie law, others obey the Curie-Weiss law. = T c is the Curie temperature. The Curie-Weiss law will apply only when the temperature is well above the Curie temperature. At temperatures below the Curie temperature the substance may become ferromagnetic. More complicated behaviour is observed with the heavier ...
Through this paternal grandmother, Pierre Curie is also a direct descendant of the Basel scientist and mathematician Jean Bernoulli (1667–1748), as is Pierre-Gilles de Gennes, winner of the 1991 Nobel Prize in Physics. Pierre and Marie Curie's daughter, Irène, and their son-in-law, Frédéric Joliot-Curie, were also physicists involved in ...
In magnetism, the Curie–Weiss law describes the magnetic susceptibility χ of a ferromagnet in the paramagnetic region above the Curie temperature: = where C is a material-specific Curie constant, T is the absolute temperature, and T C is the Curie temperature, both measured in kelvin.
The magnetization field or M-field can be defined according to the following equation: =. Where is the elementary magnetic moment and is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned.