Search results
Results From The WOW.Com Content Network
A Euclidean minimum spanning tree, for a set of points in the Euclidean plane or Euclidean space, is a system of line segments, having only the given points as their endpoints, whose union includes all of the points in a connected set, and which has the minimum possible total length of any such system.
Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph.If the graph is connected, it finds a minimum spanning tree.It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2]
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
The Euclidean minimum spanning tree of a set of points is a subset of the Delaunay triangulation of the same points, [22] and this can be exploited to compute it efficiently. For modelling terrain or other objects given a point cloud, the Delaunay triangulation gives a nice set of triangles to use as polygons in the model. In particular, the ...
The quality of the tree is measured in the same way as in a graph, using the Euclidean distance between pairs of points as the weight for each edge. Thus, for instance, a Euclidean minimum spanning tree is the same as a graph minimum spanning tree in a complete graph with Euclidean edge weights.
The exact solution of the minimum-diameter spanning tree problem, in the Euclidean plane, can be sped up from () to / + (), at the expense of using complicated range search data structures. The same method extends to higher dimensions, with smaller reductions in the exponent compared to the cubic algorithm.
For example, the minimum spanning tree of the graph associated with an instance of the Euclidean TSP is a Euclidean minimum spanning tree, and so can be computed in expected O(n log n) time for n points (considerably less than the number of edges). This enables the simple 2-approximation algorithm for TSP with triangle inequality above to ...
Edmonds' algorithm (also known as Chu–Liu/Edmonds' algorithm): find maximum or minimum branchings; Euclidean minimum spanning tree: algorithms for computing the minimum spanning tree of a set of points in the plane; Longest path problem: find a simple path of maximum length in a given graph; Minimum spanning tree. Borůvka's algorithm ...