Search results
Results From The WOW.Com Content Network
Divergence (statistics) Function that measures dissimilarity between two probability distributions. In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean ...
Bregman divergence. In mathematics, specifically statistics and information geometry, a Bregman divergence or Bregman distance is a measure of difference between two points, defined in terms of a strictly convex function; they form an important class of divergences. When the points are interpreted as probability distributions – notably as ...
Kullback–Leibler divergence. In mathematical statistics, the Kullback–Leibler (KL) divergence (also called relative entropy and I-divergence[1]), denoted , is a type of statistical distance: a measure of how one reference probability distribution P is different from a second probability distribution Q. [2][3] Mathematically, it is defined as.
f. -divergence. In probability theory, an -divergence is a certain type of function that measures the difference between two probability distributions and . Many common divergences, such as KL-divergence, Hellinger distance, and total variation distance, are special cases of -divergence.
Statistical distance. In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies ...
Integral probability metric. In probability theory, integral probability metrics are types of distance functions between probability distributions, defined by how well a class of functions can distinguish the two distributions. Many important statistical distances are integral probability metrics, including the Wasserstein-1 distance and the ...
Statistical graphics have been central to the development of science and date to the earliest attempts to analyse data. Many familiar forms, including bivariate plots, statistical maps, bar charts, and coordinate paper were used in the 18th century. Statistical graphics developed through attention to four problems: [3]