Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Eq.1 can also be evaluated outside the domain [,], and that extended sequence is -periodic.Accordingly, other sequences of indices are sometimes used, such as [,] (if is even) and [,] (if is odd), which amounts to swapping the left and right halves of the result of the transform.
To use column-major order in a row-major environment, or vice versa, for whatever reason, one workaround is to assign non-conventional roles to the indexes (using the first index for the column and the second index for the row), and another is to bypass language syntax by explicitly computing positions in a one-dimensional array.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A, I, V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
In applied mathematics, the non-uniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both).
In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. [1] There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of ...
The determinant of a tridiagonal matrix A of order n can be computed from a three-term recurrence relation. [4] Write f 1 = |a 1 | = a 1 (i.e., f 1 is the determinant of the 1 by 1 matrix consisting only of a 1), and let