Search results
Results From The WOW.Com Content Network
CMOS inverter (a NOT logic gate). Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss ", / s iː m ɑː s /, /-ɒ s /) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. [1]
In LEDs, transparent epoxy or a silicon caulk-like material that may contain a phosphor is poured into a mold containing the LED(s) and cured. The mold forms part of the package. COF: Chip-on-flex: Variation of COB, where a chip is mounted directly to a flex circuit. Unlike COB, it may not use wires nor be covered with epoxy, using underfill ...
A logic family of monolithic digital integrated circuit devices is a group of electronic logic gates constructed using one of several different designs, usually with compatible logic levels and power supply characteristics within a family. Many logic families were produced as individual components, each containing one or a few related basic ...
The benefits of full-custom design include reduced area (and therefore recurring component cost), performance improvements, and also the ability to integrate analog components and other pre-designed—and thus fully verified—components, such as microprocessor cores, that form a system on a chip.
This USART has a 3-byte receive buffer and a 1-byte transmit buffer. It has hardware to accelerate the processing of HDLC and SDLC. The CMOS version (Z85C30) provides signals to allow a third party DMA controller to perform DMA transfers. It can do asynchronous, byte level synchronous, and bit level synchronous communications. [13] 8250
In electronics, the metal–oxide ... in the form of CMOS logic. ... Although the channel does not extend the full length of the device, the electric field between ...
Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit (metal oxide semiconductor) chips were developed and then widely adopted, enabling complex semiconductor and telecommunications technologies.
2009 Nobel Prize in Physics laureates George E. Smith and Willard Boyle, 2009, photographed on a Nikon D80, which uses a CCD sensor. The basis for the CCD is the metal–oxide–semiconductor (MOS) structure, [2] with MOS capacitors being the basic building blocks of a CCD, [1] [3] and a depleted MOS structure used as the photodetector in early CCD devices.