Search results
Results From The WOW.Com Content Network
Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...
Is there an efficient way to find the global maximum/minimum? Take for example the sine integral. It has an infinite number of local maxima and minima. So how can one decide which one is the global maximum/minimum? --Abdull 17:04, 17 May 2007 (UTC) Not in the absolutely general case.
In mathematics, the maximum-minimums identity is a relation between the maximum element of a set S of n numbers and the minima of the 2 n − 1 non-empty subsets of S.
Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x.. If there exists a positive number r > 0 such that f is weakly increasing on (x − r, x] and weakly decreasing on [x, x + r), then f has a local maximum at x.
Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative , if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.
The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.
[3] [4] Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient norm is equal to zero (or undefined). [ 5 ] This sort of definition extends to differentiable maps between R m {\displaystyle \mathbb {R} ^{m}} and R n , {\displaystyle \mathbb {R} ^{n},} a critical point ...
The maximum of a subset of a preordered set is an element of which is greater than or equal to any other element of , and the minimum of is again defined dually. In the particular case of a partially ordered set , while there can be at most one maximum and at most one minimum there may be multiple maximal or minimal elements.