When.com Web Search

  1. Ad

    related to: factoring in numbers calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    A natural number is a sociable factorion if it is a periodic point for , where ⁡ = for a positive integer, and forms a cycle of period . A factorion is a sociable factorion with k = 1 {\displaystyle k=1} , and a amicable factorion is a sociable factorion with k = 2 {\displaystyle k=2} .

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

  5. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    If the approximate ratio of two factors (/) is known, then a rational number / can be picked near that value. N u v = c v ⋅ d u {\displaystyle Nuv=cv\cdot du} , and Fermat's method, applied to Nuv , will find the factors c v {\displaystyle cv} and d u {\displaystyle du} quickly.

  6. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    Pollard's p − 1 algorithm is a number theoretic integer factorization algorithm, invented by John Pollard in 1974. It is a special-purpose algorithm, meaning that it is only suitable for integers with specific types of factors; it is the simplest example of an algebraic-group factorisation algorithm.

  7. Integer factorization records - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization_records

    Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).

  8. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2. The size of these values is exponential in the size of n (see below). The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the ...

  9. Continued fraction factorization - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction...

    In number theory, the continued fraction factorization method (CFRAC) is an integer factorization algorithm.It is a general-purpose algorithm, meaning that it is suitable for factoring any integer n, not depending on special form or properties.