When.com Web Search

  1. Ad

    related to: eigenvalue and eigenvector calculator 3x3 functions

Search results

  1. Results From The WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvalues and eigenvectors give rise to many closely related mathematical concepts, and the prefix eigen-is applied liberally when naming them: The set of all eigenvectors of a linear transformation, each paired with its corresponding eigenvalue, is called the eigensystem of that transformation.

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  5. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    In general, an eigenvector of a linear operator D defined on some vector space is a nonzero vector in the domain of D that, when D acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where D is defined on a function space, the eigenvectors are referred to as eigenfunctions.

  6. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the corresponding eigenvalue is the measure of the resulting change of magnitude of the vector.

  7. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: square matrix A with linearly independent eigenvectors (not necessarily distinct eigenvalues). Decomposition: A = V D V − 1 {\displaystyle A=VDV^{-1}} , where D is a diagonal matrix formed from the eigenvalues of A , and the columns of V are the corresponding eigenvectors of A .

  8. Modal matrix - Wikipedia

    en.wikipedia.org/wiki/Modal_matrix

    In linear algebra, the modal matrix is used in the diagonalization process involving eigenvalues and eigenvectors. [1] Specifically the modal matrix for the matrix is the n × n matrix formed with the eigenvectors of as columns in . It is utilized in the similarity transformation

  9. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    The vector converges to an eigenvector of the largest eigenvalue. Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize (and orthogonalize). For a symmetric matrix A , upon convergence, AQ = QΛ , where Λ is the diagonal matrix of eigenvalues to which A converged, and where Q is a composite of ...