When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    The inductance of a closed circuit that produces one volt of electromotive force when the current in the circuit varies at a uniform rate of one ampere per second. [ 32 ] = 1 H = 1 Wb/A = 1 kg⋅m 2 /(A⋅s) 2

  3. Planck units - Wikipedia

    en.wikipedia.org/wiki/Planck_units

    One example is represented by the conditions in the first 10 −43 seconds of our universe after the Big Bang, approximately 13.8 billion years ago. The four universal constants that, by definition, have a numeric value 1 when expressed in these units are: c, the speed of light in vacuum, G, the gravitational constant, ħ, the reduced Planck ...

  4. Light-second - Wikipedia

    en.wikipedia.org/wiki/Light-second

    The light-second is a unit of length useful in astronomy, telecommunications and relativistic physics. It is defined as the distance that light travels in free space in one second , and is equal to exactly 299 792 458 m (approximately 983 571 055 ft or 186 282 miles ).

  5. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  6. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    is the corresponding change of coordinates.) The speed of light c can be seen as just a conversion factor needed because we measure the dimensions of spacetime in different units; since the metre is currently defined in terms of the second, it has the exact value of 299 792 458 m/s. We would need a similar factor in Euclidean space if, for ...

  7. Gaussian units - Wikipedia

    en.wikipedia.org/wiki/Gaussian_units

    One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.

  8. Centimetre–gram–second system of units - Wikipedia

    en.wikipedia.org/wiki/Centimetre–gram–second...

    For example, the CGS unit of force is the dyne, which is defined as 1 g⋅cm/s 2, so the SI unit of force, the newton (1 kg⋅m/s 2), is equal to 100 000 dynes. On the other hand, in measurements of electromagnetic phenomena (involving units of charge , electric and magnetic fields, voltage , and so on), converting between CGS and SI is less ...

  9. Orders of magnitude (time) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(time)

    The smallest meaningful increment of time is the Planck time―the time light takes to traverse the Planck distance, many decimal orders of magnitude smaller than a second. [ 1 ] The largest realized amount of time, based on known scientific data, is the age of the universe , about 13.8 billion years—the time since the Big Bang as measured in ...