When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Péclet number - Wikipedia

    en.wikipedia.org/wiki/Péclet_number

    In continuum mechanics, the Péclet number (Pe, after Jean Claude Eugène Péclet) is a class of dimensionless numbers relevant in the study of transport phenomena in a continuum. It is defined to be the ratio of the rate of advection of a physical quantity by the flow to the rate of diffusion of the same quantity driven by an appropriate ...

  3. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  4. Upwind differencing scheme for convection - Wikipedia

    en.wikipedia.org/wiki/Upwind_differencing_scheme...

    Solution in the central difference scheme fails to converge for Peclet number greater than 2 which can be overcome by using an upwind scheme to give a reasonable result. [1]: Fig. 5.5, 5.13 Therefore the upwind differencing scheme is applicable for Pe > 2 for positive flow and Pe < −2 for negative flow. For other values of Pe, this scheme ...

  5. Rayleigh number - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_number

    In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1]) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [2] [3] [4] It characterises the fluid's flow regime: [5] a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow.

  6. List of dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_dimensionless...

    Basic reproduction number: number of infections caused on average by an infectious individual over entire infectious period: epidemiology: Body fat percentage: total mass of fat divided by total body mass, multiplied by 100: biology Kt/V: Kt/V: medicine (hemodialysis and peritoneal dialysis treatment; dimensionless time) Waist–hip ratio

  7. Taylor dispersion - Wikipedia

    en.wikipedia.org/wiki/Taylor_dispersion

    [1] [2] [3] The effect is named after the British fluid dynamicist G. I. Taylor, who described the shear-induced dispersion for large Peclet numbers. The analysis was later generalized by Rutherford Aris for arbitrary values of the Peclet number. The dispersion process is sometimes also referred to as the Taylor-Aris dispersion.

  8. Central differencing scheme - Wikipedia

    en.wikipedia.org/wiki/Central_differencing_scheme

    It requires that transportiveness changes according to magnitude of peclet number i.e. when pe is zero is spread in all directions equally and as Pe increases (convection > diffusion) at a point largely depends on upstream value and less on downstream value. But central differencing scheme does not possess transportiveness at higher pe since Φ ...

  9. Hybrid difference scheme - Wikipedia

    en.wikipedia.org/wiki/Hybrid_difference_scheme

    For large Peclet numbers (|Pe| > 2) it uses the Upwind difference scheme, which first order accurate but takes into account the convection of the fluid. As it can be seen in figure 4 that for Pe = 0, it is a linear distribution and for high Pe it takes the upstream value depending on the flow direction.