Search results
Results From The WOW.Com Content Network
This is an unbalanced assignment problem. One way to solve it is to invent a fourth dummy task, perhaps called "sitting still doing nothing", with a cost of 0 for the taxi assigned to it. This reduces the problem to a balanced assignment problem, which can then be solved in the usual way and still give the best solution to the problem.
This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows: An instance of the problem has a number of agents (i.e., cardinality parameter) and a number of job characteristics (i.e., dimensionality parameter) such as task, machine, time interval, etc. For example, an ...
In the special case in which all the agents' budgets and all tasks' costs are equal to 1, this problem reduces to the assignment problem. When the costs and profits of all tasks do not vary between different agents, this problem reduces to the multiple knapsack problem. If there is a single agent, then, this problem reduces to the knapsack problem.
The formal definition of the bottleneck assignment problem is Given two sets, A and T, together with a weight function C : A × T → R. Find a bijection f : A → T such that the cost function: (, ()) is minimized.
Fair random assignment (also called probabilistic one-sided matching) is a kind of a fair division problem. In an assignment problem (also called house-allocation problem or one-sided matching), there are m objects and they have to be allocated among n agents, such that each agent receives at most one object. Examples include the assignment of ...
The quadratic assignment problem (QAP) is one of the fundamental combinatorial optimization problems in the branch of optimization or operations research in mathematics, from the category of the facilities location problems first introduced by Koopmans and Beckmann. [1] The problem models the following real-life problem:
It is related to the quadratic assignment problem in the same way as the linear bottleneck assignment problem is related to the linear assignment problem, the "sum" is replaced with "max" in the objective function. The problem models the following real-life problem: There are a set of n facilities and a set of n locations.
The ideas of the auction algorithm and ε-scaling [1] are also central in preflow-push algorithms for single commodity linear network flow problems. In fact the preflow-push algorithm for max-flow can be derived by applying the original 1979 auction algorithm to the max flow problem after reformulation as an assignment problem.