Search results
Results From The WOW.Com Content Network
With the restricted definition, each Farey sequence starts with the value 0, denoted by the fraction 0 / 1 , and ends with the value 1, denoted by the fraction 1 / 1 (although some authors omit these terms). A Farey sequence is sometimes called a Farey series, which is not strictly correct, because the terms are not summed. [2]
In combinatorial mathematics, a de Bruijn sequence of order n on a size-k alphabet A is a cyclic sequence in which every possible length-n string on A occurs exactly once as a substring (i.e., as a contiguous subsequence). Such a sequence is denoted by B(k, n) and has length k n, which is also the number of distinct strings of length n on A.
It concerns sequences of integers in which each term is obtained from the previous term as follows: if a term is even, the next term is one half of it. If a term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence.
An integer sequence is a sequence whose terms are integers. A polynomial sequence is a sequence whose terms are polynomials. A positive integer sequence is sometimes called multiplicative, if a nm = a n a m for all pairs n, m such that n and m are coprime. [8] In other instances, sequences are often called multiplicative, if a n = na 1 for all n.
To calculate a Pythagorean triple, take any term of this sequence and convert it to an improper fraction (for mixed number , the corresponding improper fraction is ). Then its numerator and denominator are the sides, b and a, of a right triangle, and the hypotenuse is b + 1. For example:
In number theory, Sylvester's sequence is an integer sequence in which each term is the product of the previous terms, plus one. Its first few terms are Its first few terms are 2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443 (sequence A000058 in the OEIS ).
The sequence of Lucas numbers (not to be confused with the generalized Lucas sequences, of which this is part) is like the Fibonacci sequence, in that each term is the sum of the previous two terms and , however instead starts with , as the 0th and 1st terms and :
The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. [1] This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ...