Search results
Results From The WOW.Com Content Network
The memory color effect is the phenomenon that the canonical hue of a type of object acquired through experience (e.g. the sky, a leaf, or a strawberry) can directly modulate the appearance of the actual colors of objects. Human observers acquire memory colors through their experiences with instances of that type.
The data collected from neuroimaging studies gives researchers the ability to visualize which brain regions are activated in specific cognitive visual memory tasks. With the use of brain imaging devices researchers able to further investigate memory performance above and beyond standard tests based on exact response times, and activation.
Chromatic adaptation is the human visual system’s ability to adjust to changes in illumination in order to preserve the appearance of object colors. It is responsible for the stable appearance of object colors despite the wide variation of light which might be reflected from an object and observed by our eyes.
The main symptom is loss of vision, with colors appearing subtly washed out in the affected eye. A pale disc is characteristic of long-standing optic neuropathy. In many cases, only one eye is affected and a person may not be aware of the loss of color vision until the examiner asks them to cover the healthy eye.
A color appearance model (CAM) is a mathematical model that seeks to describe the perceptual aspects of human color vision, i.e. viewing conditions under which the appearance of a color does not tally with the corresponding physical measurement of the stimulus source.
Age-related memory loss, sometimes described as "normal aging" (also spelled "ageing" in British English), is qualitatively different from memory loss associated with types of dementia such as Alzheimer's disease, and is believed to have a different brain mechanism.
The hippocampus plays an important role in the transfer of information from short-term memory to long-term memory during encoding and retrieval stages. These stages do not need to occur successively, but are, as studies seem to indicate, and they are broadly divided in the neuronal mechanisms that they require or even in the hippocampal areas ...
The study suggests that the ability to perceive color developed before the widespread appearance of colorful stimuli in the environment. [11] This discovery has generated interest and discussion among scientists because it raises important questions about the evolutionary pressures that led to the development of color vision.