When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. RNA polymerase - Wikipedia

    en.wikipedia.org/wiki/RNA_polymerase

    RNA polymerase can also relieve the stress by releasing its downstream contacts, arresting transcription. The paused transcribing complex has two options: (1) release the nascent transcript and begin anew at the promoter or (2) reestablish a new 3′-OH on the nascent transcript at the active site via RNA polymerase's catalytic activity and ...

  3. Transcription (biology) - Wikipedia

    en.wikipedia.org/wiki/Transcription_(biology)

    In bacteria, there is one general RNA transcription factor known as a sigma factor. RNA polymerase core enzyme binds to the bacterial general transcription (sigma) factor to form RNA polymerase holoenzyme and then binds to a promoter. [6] (RNA polymerase is called a holoenzyme when sigma subunit is attached to the core enzyme which is consist ...

  4. Eukaryotic transcription - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_transcription

    The transcription, a complete set of general transcription factors and RNA polymerase need to be assembled at the core promoter to form the ~2.5 million Dalton preinitiation complex. [16] For example, for promoters that contain a TATA box near the TSS, the recognition of TATA box by the TBP subunit of TFIID initiates the assembly of a ...

  5. Bacterial transcription - Wikipedia

    en.wikipedia.org/wiki/Bacterial_transcription

    Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.

  6. RNA polymerase II - Wikipedia

    en.wikipedia.org/wiki/RNA_polymerase_II

    RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. [11] It consists of RNA polymerase II, a subset of general transcription factors , and regulatory proteins known as SRB proteins.

  7. General transcription factor - Wikipedia

    en.wikipedia.org/wiki/General_transcription_factor

    A transcription factor is a protein that binds to specific DNA sequences (enhancer or promoter), either alone or with other proteins in a complex, to control the rate of transcription of genetic information from DNA to messenger RNA by promoting (serving as an activator) or blocking (serving as a repressor) the recruitment of RNA polymerase.

  8. Transcriptional regulation - Wikipedia

    en.wikipedia.org/wiki/Transcriptional_regulation

    The variable affinity of RNA polymerase for different promoter sequences is related to regions of consensus sequence upstream of the transcription start site. The more nucleotides of a promoter that agree with the consensus sequence, the stronger the affinity of the promoter for RNA Polymerase likely is. [4]

  9. RNA polymerase III - Wikipedia

    en.wikipedia.org/wiki/RNA_polymerase_III

    In eukaryote cells, RNA polymerase III (also called Pol III) is a protein that transcribes DNA to synthesize 5S ribosomal RNA, tRNA, and other small RNAs. The genes transcribed by RNA Pol III fall in the category of "housekeeping" genes whose expression is required in all cell types and most environmental conditions.