When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  3. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.

  4. Plane (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plane_(mathematics)

    In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    A basic 3D rotation (also called elemental rotation) is a rotation about one of the axes of a coordinate system. The following three basic rotation matrices rotate vectors by an angle θ about the x-, y-, or z-axis, in three dimensions, using the right-hand rule—which codifies their alternating signs.

  6. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    Berger, Marcel (1987), Geometry I, Berlin: Springer, ISBN 3-540-11658-3; Coxeter, H.S.M. (1973) [1948]. Regular Polytopes (3rd ed.). New York: Dover. Schläfli ... discovered them before 1853 -- a time when Cayley, Grassman and Möbius were the only other people who had ever conceived of the possibility of geometry in more than three dimensions.

  7. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    In odd dimensions (n = 3, 5, 7, ...) there are ⁠ n − 1 / 2 ⁠ planes and angles of rotation, the same as the even dimension one lower. These do not span the space, but leave a line which does not rotate – like the axis of rotation in three dimensions, except rotations do not take place about this line but in multiple planes orthogonal to ...

  8. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 ...

  9. Plane-based geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Plane-based_geometric_algebra

    This group is usually called SE(3), the group of Special (handedness-preserving) Euclidean (distance-preserving) transformations in 3 dimensions. This group has two commonly-used representations that allow them to be used in algebra and computation, one being the 4×4 matrices of real numbers, and the other being the Dual Quaternions .