Search results
Results From The WOW.Com Content Network
Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force.
This table shows the real hydrogen-like wave functions for all atomic orbitals up to 7s, and therefore covers the occupied orbitals in the ground state of all elements in the periodic table up to radium and some beyond. "ψ" graphs are shown with − and + wave function phases shown in two different colors (arbitrarily red and blue).
The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.
The displayed functions are solutions to the Schrödinger equation. Obviously, not every function in L 2 satisfies the Schrödinger equation for the hydrogen atom. The function space is thus a subspace of L 2. The displayed functions form part of a basis for the function space. To each triple (n, ℓ, m), there corresponds a basis wave function ...
The table of spherical harmonics ... As is known from the analytic solutions for the hydrogen atom, the eigenfunctions of the angular part of the wave function are ...
Visualization of the hydrogen wave function, prominently used in several articles. Hydrogen is made of only one electron and one proton, so it's understanding forms a basis for the understanding of more complex elements (as evident in the use of this image in articles below). Articles in which this image appears
The Schrödinger equation for the electron in a hydrogen atom (or a hydrogen-like atom) is = where is the electron charge, is the position of the electron relative to the nucleus, = | | is the magnitude of the relative position, the potential term is due to the Coulomb interaction, wherein is the permittivity of free space and = + is the 2-body ...
When solving to obtain the wave function, the Schrödinger equation resolves into three equations that lead to the first three quantum numbers, meaning that the three equations are interrelated. The azimuthal quantum number arises in solving the polar part of the wave equation—relying on the spherical coordinate system , which generally works ...