Search results
Results From The WOW.Com Content Network
Thomson made the discovery around the same time that Walter Kaufmann and Emil Wiechert discovered the correct mass to charge ratio of these cathode rays (electrons). [ 35 ] The name "electron" was adopted for these particles by the scientific community, mainly due to the advocation by George Francis FitzGerald , Joseph Larmor , and Hendrik ...
Thomson himself was a physicist and his atomic model was a byproduct of his investigations of cathode rays, by which he discovered the negatively charged particles now known as electrons. Thomson hypothesized that the quantity, arrangement, and motions of electrons in the atom could explain its physical and chemical properties, such as emission ...
The Thomson problem is a natural consequence of J. J. Thomson's plum pudding model in the absence of its uniform positive background charge. [ 12 ] "No fact discovered about the atom can be trivial, nor fail to accelerate the progress of physical science, for the greater part of natural philosophy is the outcome of the structure and mechanism ...
[33] [34]: 393 Decades of experimental and theoretical research involving cathode rays were important in J. J. Thomson's eventual discovery of electrons. [3] Goldstein also experimented with double cathodes and hypothesized that one ray may repulse another, although he didn't believe that any particles might be involved. [35]
Thomson further explained that ions are atoms that have a surplus or shortage of electrons. [53] Thomson's model is popularly known as the plum pudding model, based on the idea that the electrons are distributed throughout the sphere of positive charge with the same density as raisins in a plum pudding. Neither Thomson nor his colleagues ever ...
With Thomson's discovery of the electron in 1897, scientist began the search for a model of the interior of the atom. Thomson proposed negative electrons swimming in a pool of positive charge. Between 1908 and 1911, Rutherford showed that the positive part was only 1/3000th of the diameter of the atom. [6]: 26
The discovery of these particles required very different experimental methods from that of their ordinary matter counterparts, and provided evidence that all particles had antiparticles—an idea that is fundamental to quantum field theory, the modern mathematical framework for particle physics. In the case of most subsequent particle ...
The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [1]: 123 Thomson had discovered the electron through his work on cathode rays [2] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.