Search results
Results From The WOW.Com Content Network
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].
In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1] This indicates a spontaneous reaction if the system is closed and initial and final temperatures are the same.
As calculated by the Henderson–Hasselbalch equation, in order to maintain a normal pH of 7.4 in the blood (whereby the pK a of carbonic acid is 6.1 at physiological temperature), a 20:1 ratio of bicarbonate to carbonic acid must constantly be maintained; this homeostasis is mainly mediated by pH sensors in the medulla oblongata of the brain ...
Cellular respiration, for instance, is the oxidation of glucose (C 6 H 12 O 6) to CO 2 and the reduction of oxygen to water. The summary equation for cellular respiration is: C 6 H 12 O 6 + 6 O 2 → 6 CO 2 + 6 H 2 O + Energy. The process of cellular respiration also depends heavily on the reduction of NAD + to NADH and the reverse reaction ...
The energy derived as a result of the chemical gradient is then used to synthesize ATP by coupling the reaction of inorganic phosphate to ADP in the active site of the ATP synthase enzyme; the equation for this can be written as ADP + P i → ATP. [citation needed]
Photosynthesis and cellular respiration are distinct processes, as they take place through different sequences of chemical reactions and in different cellular compartments (cellular respiration in mitochondria). [15] [16] The general equation for photosynthesis as first proposed by Cornelis van Niel is: [17]
Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...
The above general form, when considering O 2 as the oxidant, is the equation for respiration. In this context specifically, the above equation represents bacterial respiration though the reactants and products are essentially analogous to the short-hand equations used for multi-cellular respiration.