Search results
Results From The WOW.Com Content Network
The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)
For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is = where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: T = 2 π m k {\displaystyle T=2\pi {\sqrt {\frac {m}{k}}}} shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small.
[1] [2] The terms mathematical constant or physical constant are sometimes used to distinguish this meaning. [3] A function whose value remains unchanged (i.e., a constant function). [4] Such a constant is commonly represented by a variable which does not depend on the main variable(s) in question.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Moreover, any object traveling at a constant velocity must be subject to zero net force (resultant force). This is the definition of dynamic equilibrium: when all the forces on an object balance but it still moves at a constant velocity. A simple case of dynamic equilibrium occurs in constant velocity motion across a surface with kinetic ...