Search results
Results From The WOW.Com Content Network
[17] [22] [23] This definition allows larger running times than the first definition of sub-exponential time. An example of such a sub-exponential time algorithm is the best-known classical algorithm for integer factorization, the general number field sieve, which runs in time about ~ (/), where the length of the input is n.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
Amortized analysis initially emerged from a method called aggregate analysis, which is now subsumed by amortized analysis. The technique was first formally introduced by Robert Tarjan in his 1985 paper Amortized Computational Complexity, [1] which addressed the need for a more useful form of analysis than the common probabilistic methods used.
Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).
In other words, for a given input size n greater than some n 0 and a constant c, the run-time of that algorithm will never be larger than c × f(n). This concept is frequently expressed using Big O notation. For example, since the run-time of insertion sort grows quadratically as its input size increases, insertion sort can be said to be of ...
For example, the amount of time it takes to solve problems in the complexity class P grows at a polynomial rate as the input size increases, which is comparatively slow compared to problems in the exponential complexity class EXPTIME (or more accurately, for problems in EXPTIME that are outside of P, since ).
Irregular repeat accumulate (IRA) codes build on top of the ideas of RA codes. IRA replaces the outer code in RA code with a low density generator matrix code. [1] IRA codes first repeats information bits different times, and then accumulates subsets of these repeated bits to generate parity bits.