When.com Web Search

  1. Ads

    related to: gradient formula calculus examples

Search results

  1. Results From The WOW.Com Content Network
  2. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative vector field is always the gradient of a function.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  4. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:

  5. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...

  6. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  7. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    To establish a complete analogy with the line integral of a vector field, one must go back to the definition of differentiability in multivariable calculus. The gradient is defined from Riesz representation theorem, and inner products in complex analysis involve conjugacy (the gradient of a function at some would be ′ ¯, and the complex ...

  8. Surface gradient - Wikipedia

    en.wikipedia.org/wiki/Surface_gradient

    In other words, the surface gradient is the orthographic projection of the gradient onto the surface. The surface gradient arises whenever the gradient of a quantity over a surface is important. In the study of capillary surfaces for example, the gradient of spatially varying surface tension doesn't make much sense, however the surface gradient ...

  9. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...