When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    Eigenfunctions. In general, an eigenvector of a linear operator D defined on some vector space is a nonzero vector in the domain of D that, when D acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where D is defined on a function space, the eigenvectors are referred to as eigenfunctions. That is, a ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Eigenvalues and eigenvectors. In linear algebra, an eigenvector (/ ˈaɪɡən -/ EYE-gən-) or characteristic vector is a vector that has its direction unchanged by a given linear transformation. More precisely, an eigenvector, , of a linear transformation, , is scaled by a constant factor, , when the linear transformation is applied to it: .

  4. Mercer's theorem - Wikipedia

    en.wikipedia.org/wiki/Mercer's_theorem

    Since T K is a linear operator, we can talk about eigenvalues and eigenfunctions of T K. Theorem. Suppose K is a continuous symmetric positive-definite kernel. Then there is an orthonormal basis {e i} i of L 2 [a, b] consisting of eigenfunctions of T K such that the corresponding sequence of eigenvalues {λ i} i is nonnegative.

  5. Hilbert–Schmidt theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_theorem

    Hilbert–Schmidt theorem. In mathematical analysis, the Hilbert–Schmidt theorem, also known as the eigenfunction expansion theorem, is a fundamental result concerning compact, self-adjoint operators on Hilbert spaces. In the theory of partial differential equations, it is very useful in solving elliptic boundary value problems.

  6. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Explicit formulas for eigenvalues and eigenvectors of the second derivative with different boundary conditions are provided both for the continuous and discrete cases. In the discrete case, the standard central difference approximation of the second derivative is used on a uniform grid. These formulas are used to derive the expressions for ...

  7. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The lambdas are the eigenvalues of the matrix; they need not be distinct. In linear algebra, a Jordan normal form, also known as a Jordan canonical form, [1][2] is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis.

  8. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    t. e. In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation.

  9. Wirtinger's inequality for functions - Wikipedia

    en.wikipedia.org/wiki/Wirtinger's_inequality_for...

    the first eigenvalue of the Laplace–Beltrami operator on the n-dimensional real projective space (with normalization given by the covering map from the unit-radius sphere) is 2n + 2, and the corresponding eigenfunctions are the restrictions of the homogeneous quadratic polynomials on R n + 1 to the unit sphere (and then to the real projective ...