When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    Solutions of the Einstein field equations. Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.

  3. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    Three-body problem. Approximate trajectories of three identical bodies located at the vertices of a scalene triangle and having zero initial velocities. The center of mass, in accordance with the law of conservation of momentum, remains in place. In physics, specifically classical mechanics, the three-body problem is to take the initial ...

  4. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    Orbit insertion. v. t. e. In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. [ 1 ] Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars.

  5. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    v. t. e. In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. [1] The equations were published by Albert Einstein in 1915 in the form of a tensor equation [2] which related the local spacetime curvature (expressed by ...

  6. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel. Though it can be applied to any matrix with non ...

  7. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes. Explicit methods calculate the state of a system at a later time from the state of the system ...

  8. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  9. Homotopy analysis method - Wikipedia

    en.wikipedia.org/wiki/Homotopy_analysis_method

    The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary / partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy- Maclaurin series to deal with the ...