When.com Web Search

  1. Ad

    related to: categories of stress in physics

Search results

  1. Results From The WOW.Com Content Network
  2. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    Stress analysis is a branch of applied physics that covers the determination of the internal distribution of internal forces in solid objects. It is an essential tool in engineering for the study and design of structures such as tunnels, dams, mechanical parts, and structural frames, under prescribed or expected loads.

  3. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  4. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Deformation (engineering) Compressive stress results in deformation which shortens the object but also expands it outwards. In engineering, deformation (the change in size or shape of an object) may be elastic or plastic. If the deformation is negligible, the object is said to be rigid.

  5. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The tensile strength can be quoted as either true stress or engineering stress, but engineering stress is the most commonly used. Fatigue strength is a more complex measure of the strength of a material that considers several loading episodes in the service period of an object, [ 6 ] and is usually more difficult to assess than the static ...

  6. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

  7. Deformation (physics) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(physics)

    In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non- rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation (its ...

  8. Hydrostatic stress - Wikipedia

    en.wikipedia.org/wiki/Hydrostatic_stress

    Hydrostatic stress. In continuum mechanics, hydrostatic stress, also known as isotropic stress or volumetric stress, [1] is a component of stress which contains uniaxial stresses, but not shear stresses. [2] A specialized case of hydrostatic stress contains isotropic compressive stress, which changes only in volume, but not in shape. [1]

  9. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    Cylinder stress. In mechanics, a cylinder stress is a stress distribution with rotational symmetry; that is, which remains unchanged if the stressed object is rotated about some fixed axis. Cylinder stress patterns include: circumferential stress, or hoop stress, a normal stress in the tangential (azimuth) direction.