Search results
Results From The WOW.Com Content Network
Fig 4–2. Relativistic time dilation, as depicted in a single Loedel spacetime diagram. Both observers consider the clock of the other as running slower. Relativistic time dilation refers to the fact that a clock (indicating its proper time in its rest frame) that moves relative to an observer is observed to run slower. The situation is ...
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...
Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime.. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.
Minkowski space is named for the German mathematician Hermann Minkowski, who around 1907 realized that the theory of special relativity (previously developed by Poincaré and Einstein) could be elegantly described using a four-dimensional spacetime, which combines the dimension of time with the three dimensions of space.
The statement that the speed of light is the same for all observers is represented by drawing a light ray as a 45° line, regardless of the speed of the source relative to the speed of the observer. In the first diagram, the two ends of the train are drawn as grey lines.
Included in "elsewhere" is the simultaneous hyperplane, which is defined for a given observer by a space that is hyperbolic-orthogonal to their world line. It is really three-dimensional, though it would be a 2-plane in the diagram because we had to throw away one dimension to make an intelligible picture.
These hyperbolic coordinates can be separated into two main variants depending on the accelerated observer's position: If the observer is located at time T = 0 at position X = 1/α (with α as the constant proper acceleration measured by a comoving accelerometer), then the hyperbolic coordinates are often called Rindler coordinates with the ...
The velocity, in contrast, is the rate of change of the position in (three-dimensional) space of the object, as seen by an observer, with respect to the observer's time. The value of the magnitude of an object's four-velocity, i.e. the quantity obtained by applying the metric tensor g to the four-velocity U , that is ‖ U ‖ 2 = U ⋅ U = g ...