Search results
Results From The WOW.Com Content Network
The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series ...
Perhaps the best-known value of the gamma function at a non-integer argument is =, which can be found by setting = in the reflection or duplication formulas, by using the relation to the beta function given below with = =, or simply by making the substitution = in the integral definition of the gamma function, resulting in a Gaussian integral.
By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.
Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...
By choosing an appropriate g (typically a small integer), only some 5–10 terms of the series are needed to compute the gamma function with typical single or double floating-point precision. If a fixed g is chosen, the coefficients can be calculated in advance and, thanks to partial fraction decomposition, the sum is recast into the following ...
Performing partial fraction on u n in the complex field, ... Inspired by the harmonic mean value inequality for the classical gamma function, Horzt Alzer and Graham ...
In the case and are real and positive, the series converges for all values of the argument , so the Mittag-Leffler function is an entire function. This class of functions are important in the theory of the fractional calculus. See below for three-parameter generalizations.
the gamma function, a generalization of the factorial [2] the upper incomplete gamma function; the modular group, the group of fractional linear transformations; the gamma distribution, a continuous probability distribution defined using the gamma function; second-order sensitivity to price in mathematical finance