Search results
Results From The WOW.Com Content Network
If X has a standard uniform distribution, then by the inverse transform sampling method, Y = − λ −1 ln(X) has an exponential distribution with (rate) parameter λ. If X has a standard uniform distribution, then Y = X n has a beta distribution with parameters (1/n,1). As such, The Irwin–Hall distribution is the sum of n i.i.d. U(0,1 ...
The characteristic function always exists when treated as a function of a real-valued argument, unlike the moment-generating function. There are relations between the behavior of the characteristic function of a distribution and properties of the distribution, such as the existence of moments and the existence of a density function.
The problem of estimating the maximum of a discrete uniform distribution on the integer interval [,] from a sample of k observations is commonly known as the German tank problem, following the practical application of this maximum estimation problem, during World War II, by Allied forces seeking to estimate German tank production.
Uniform distribution may refer to: Continuous uniform distribution; Discrete uniform distribution; Uniform distribution (ecology) Equidistributed sequence; See also.
A 10,000 point Monte Carlo simulation of the distribution of the sample mean of a circular uniform distribution for N = 3 Probability densities (¯) for small values of . Densities for N > 3 {\displaystyle N>3} are normalised to the maximum density, those for N = 1 {\displaystyle N=1} and 2 {\displaystyle 2} are scaled to aid visibility.
A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]
A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.
An even stronger uniform convergence result for the empirical distribution function is available in the form of an extended type of law of the iterated logarithm. [3] (p 268) See asymptotic properties of the empirical distribution function for this and related results.