When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    However, Euclid's reasoning from assumptions to conclusions remains valid independently from the physical reality. [4] Near the beginning of the first book of the Elements, Euclid gives five postulates (axioms) for plane geometry, stated in terms of constructions (as translated by Thomas Heath): [5] Let the following be postulated:

  3. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    This postulate does not specifically talk about parallel lines; [1] it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate.

  4. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.

  5. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    In this work Klügel examined 28 attempts to prove Postulate 5 (including Saccheri's), found them all deficient, and offered the opinion that Postulate 5 is unprovable and is supported solely by the judgment of our senses. The beginning of the 19th century would finally witness decisive steps in the creation of non-Euclidean geometry.

  6. Euclid - Wikipedia

    en.wikipedia.org/wiki/Euclid

    Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.

  7. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    For example, using a compass, straightedge, and a piece of paper on which we have the parabola y=x 2 together with the points (0,0) and (1,0), one can construct any complex number that has a solid construction. Likewise, a tool that can draw any ellipse with already constructed foci and major axis (think two pins and a piece of string) is just ...

  8. In the first-round of the College Football Playoff, teams seeded No. 5 through No. 12 will engage in elimination games. The action kicks off with a Friday night showdown between No. 7 Notre Dame ...

  9. Point–line–plane postulate - Wikipedia

    en.wikipedia.org/wiki/Point–line–plane_postulate

    The axiomatic foundation of Euclidean geometry can be dated back to the books known as Euclid's Elements (circa 300 B.C.). These five initial axioms (called postulates by the ancient Greeks) are not sufficient to establish Euclidean geometry. Many mathematicians have produced complete sets of axioms which do establish Euclidean geometry.