Search results
Results From The WOW.Com Content Network
An example of an uninformatively named constant is int SIXTEEN = 16, while int NUMBER_OF_BITS = 16 is more descriptive. The problems associated with magic 'numbers' described above are not limited to numerical types and the term is also applied to other data types where declaring a named constant would be more flexible and communicative. [1]
For example, 13 0 0 has three significant figures (and hence indicates that the number is precise to the nearest ten). Less often, using a closely related convention, the last significant figure of a number may be underlined; for example, "1 3 00" has two significant figures. A decimal point may be placed after the number; for example "1300."
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...
This table illustrates an example of an 8 bit signed decimal value using the two's complement method. The MSb most significant bit has a negative weight in signed integers, in this case -2 7 = -128. The other bits have positive weights. The lsb (least significant bit) has weight 2 0 =1. The signed value is in this case -128+2 = -126.
Fractional numbers are supported on most programming languages as floating-point numbers or fixed-point numbers. However, such representations typically restrict the denominator to a power of two. Most decimal fractions (or most fractions in general) cannot be represented exactly as a fraction with a denominator that is a power of two.
Most modern CPUs feature single instruction, multiple data (SIMD) instruction sets (Streaming SIMD Extensions, AltiVec etc.) where 128-bit vector registers are used to store several smaller numbers, such as four 32-bit floating-point numbers. A single instruction can then operate on all these values in parallel.
This gives from 6 to 9 significant decimal digits precision. If a decimal string with at most 6 significant digits is converted to the IEEE 754 single-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string. If an IEEE 754 single ...
This gives from 33 to 36 significant decimal digits precision. If a decimal string with at most 33 significant digits is converted to the IEEE 754 quadruple-precision format, giving a normal number, and then converted back to a decimal string with the same number of digits, the final result should match the original string.