Search results
Results From The WOW.Com Content Network
Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.
Conversion formulae Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both E {\displaystyle E} , a material property, and I {\displaystyle I} , the physical geometry of the beam.
The Poisson's ratio is a measure in which a material tends to expand in directions perpendicular to the direction of compression. After measuring the Young's modulus and the shear modulus, dedicated software determines the Poisson's ratio using Hooke's law which can only be applied to isotropic materials according to the different standards.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.
In fracture mechanics, the stress intensity factor (K) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. [1] It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle ...
The resistivity of these materials changes with strain, accounting for the / term of the defining equation above. In constantan strain gauges (the most commercially popular), the effect accounts for 20% of the gauge factor, but in silicon gauges, the contribution of the piezoresistive term is much larger than the geometric terms.
There are two kinds of seismic body waves in solids, pressure waves (P-waves) and shear waves. In linear elasticity, the P-wave modulus, also known as the longitudinal modulus, or the constrained modulus, is one of the elastic moduli available to describe isotropic homogeneous materials.