Search results
Results From The WOW.Com Content Network
OctaDist is computer software for crystallography and inorganic chemistry program. It is mainly used for computing distortion parameters of coordination complex such as spin crossover complex (SCO), magnetic metal complex and metal–organic framework (MOF).
Descartes's theorem on the "total defect" of a polyhedron states that if the polyhedron is homeomorphic to a sphere (i.e. topologically equivalent to a sphere, so that it may be deformed into a sphere by stretching without tearing), the "total defect", i.e. the sum of the defects of all of the vertices, is two full circles (or 720° or 4 π ...
O h, *432, [4,3], or m3m of order 48 – achiral octahedral symmetry or full octahedral symmetry. This group has the same rotation axes as O, but with mirror planes, comprising both the mirror planes of T d and T h. This group is isomorphic to S 4.C 2, and is the full symmetry group of the cube and octahedron. It is the hyperoctahedral group ...
The unit cell is defined as the smallest repeating unit having the full symmetry of the crystal structure. [2] The geometry of the unit cell is defined as a parallelepiped , providing six lattice parameters taken as the lengths of the cell edges ( a , b , c ) and the angles between them (α, β, γ).
The Jahn–Teller effect (JT effect or JTE) is an important mechanism of spontaneous symmetry breaking in molecular and solid-state systems which has far-reaching consequences in different fields, and is responsible for a variety of phenomena in spectroscopy, stereochemistry, crystal chemistry, molecular and solid-state physics, and materials science.
The ideal tetrahedron, cube, octahedron, and dodecahedron form respectively the order-6 tetrahedral honeycomb, order-6 cubic honeycomb, order-4 octahedral honeycomb, and order-6 dodecahedral honeycomb; here the order refers to the number of cells meeting at each edge. However, the ideal icosahedron does not tile space in the same way.
This is an indexed list of the uniform and stellated polyhedra from the book Polyhedron Models, by Magnus Wenninger.. The book was written as a guide book to building polyhedra as physical models.
The rhombic dodecahedron can be viewed as the convex hull of the union of the vertices of a cube and an octahedron where the edges intersect perpendicularly. The six vertices where four rhombi meet correspond to the vertices of the octahedron, while the eight vertices where three rhombi meet correspond to the vertices of the cube.