When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. List of order structures in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_order_structures...

    In mathematics, and more specifically in order theory, several different types of ordered set have been studied. They include: Cyclic orders, orderings in which triples of elements are either clockwise or counterclockwise; Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound.

  4. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    A set with a partial order on it is called a partially ordered set, poset, or just ordered set if the intended meaning is clear. By checking these properties, one immediately sees that the well-known orders on natural numbers , integers , rational numbers and reals are all orders in the above sense.

  5. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    A set equipped with a total order is a totally ordered set; [5] the terms simply ordered set, [2] linearly ordered set, [3] [5] toset [6] and loset [7] [8] are also used. The term chain is sometimes defined as a synonym of totally ordered set, [5] but generally refers to a totally ordered subset of a given partially ordered set.

  6. Complete partial order - Wikipedia

    en.wikipedia.org/wiki/Complete_partial_order

    The term complete partial order, abbreviated cpo, has several possible meanings depending on context. A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. (A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset.)

  7. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

  8. Duality (order theory) - Wikipedia

    en.wikipedia.org/wiki/Duality_(order_theory)

    In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by P op or P d.This dual order P op is defined to be the same set, but with the inverse order, i.e. x ≤ y holds in P op if and only if y ≤ x holds in P.

  9. Order dimension - Wikipedia

    en.wikipedia.org/wiki/Order_dimension

    A partial order of dimension 4 (shown as a Hasse diagram) and four total orderings that form a realizer for this partial order. In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order.