Search results
Results From The WOW.Com Content Network
A set equipped with a total order is a totally ordered set; [5] the terms simply ordered set, [2] linearly ordered set, [3] [5] toset [6] and loset [7] [8] are also used. The term chain is sometimes defined as a synonym of totally ordered set , [ 5 ] but generally refers to a totally ordered subset of a given partially ordered set.
Conversely, a strict partial order < on may be converted to a non-strict partial order by adjoining all relationships of that form; that is, := < is a non-strict partial order. Thus, if ≤ {\displaystyle \leq } is a non-strict partial order, then the corresponding strict partial order < is the irreflexive kernel given by a < b if a ≤ b and a ...
Partial-order planning is an approach to automated planning that maintains a partial ordering between actions and only commits ordering between actions when forced to, that is, ordering of actions is partial. Also this planning doesn't specify which action will come out first when two actions are processed.
A partial order with this property is called a total order. These orders can also be called linear orders or chains. While many familiar orders are linear, the subset order on sets provides an example where this is not the case. Another example is given by the divisibility (or "is-a-factor-of") relation |.
A strict weak order that is trichotomous is called a strict total order. [14] The total preorder which is the inverse of its complement is in this case a total order. For a strict weak order < another associated reflexive relation is its reflexive closure, a (non-strict) partial order .
Partial order Total preorder Total order Prewellordering Well-quasi-ordering Well-ordering Lattice Join-semilattice Meet-semilattice Strict partial order Strict weak order Strict total order Symmetric: Antisymmetric: Connected: Well-founded: Has joins: Has meets: Reflexive: Irreflexive: Asymmetric
Partial and total orders are antisymmetric by definition. A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species).
In order theory, a branch of mathematics, a linear extension of a partial order is a total order (or linear order) that is compatible with the partial order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order.