Search results
Results From The WOW.Com Content Network
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.
The maximum likelihood method weights the difference between fit and data using the same weights . The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability ...
An exponential moving average (EMA), also known as an exponentially weighted moving average (EWMA), [5] is a first-order infinite impulse response filter that applies weighting factors which decrease exponentially. The weighting for each older datum decreases exponentially, never reaching zero. This formulation is according to Hunter (1986). [6]
The average cost is computed by dividing the total cost of goods available for sale by the total units available for sale. This gives a weighted-average unit cost that is applied to the units in the ending inventory. There are two commonly used average cost methods: Simple weighted-average cost method and perpetual weighted-average cost method. [2]
In statistics, inverse-variance weighting is a method of aggregating two or more random variables to minimize the variance of the weighted average. Each random variable is weighted in inverse proportion to its variance (i.e., proportional to its precision). Given a sequence of independent observations y i with variances σ i 2, the inverse ...
A weighted average, or weighted mean, is an average in which some data points count more heavily than others in that they are given more weight in the calculation. [6] For example, the arithmetic mean of 3 {\displaystyle 3} and 5 {\displaystyle 5} is 3 + 5 2 = 4 {\displaystyle {\frac {3+5}{2}}=4} , or equivalently 3 ⋅ 1 2 + 5 ⋅ 1 2 = 4 ...
The Marshall-Edgeworth index, credited to Marshall (1887) and Edgeworth (1925), [11] is a weighted relative of current period to base period sets of prices. This index uses the arithmetic average of the current and based period quantities for weighting. It is considered a pseudo-superlative formula and is symmetric. [12]
This method can also be used to create spatial weights matrices in spatial autocorrelation analyses (e.g. Moran's I). [1] The name given to this type of method was motivated by the weighted average applied, since it resorts to the inverse of the distance to each known point ("amount of proximity") when assigning weights.