Ad
related to: stationary point formula sheet for chemistry
Search results
Results From The WOW.Com Content Network
The most important points on a PES are the stationary points where the surface is flat, i.e. parallel to a horizontal line corresponding to one geometric parameter, a plane corresponding to two such parameters or even a hyper-plane corresponding to more than two geometric parameters. The energy values corresponding to the transition states and ...
The point 0 is a non-isolated stationary point which is not a turning point nor a horizontal point of inflection as the signs of f ′ (x) and f″(x) do not change. The function f ( x ) = x 5 sin(1/ x ) for x ≠ 0, and f (0) = 0, gives an example where f ′ ( x ) and f″ ( x ) are both continuous, f ′ (0) = 0 and f″ (0) = 0, and yet f ...
Stationary points (or points with a zero gradient) have physical meaning: energy minima correspond to physically stable chemical species and saddle points correspond to transition states, the highest energy point on the reaction coordinate (which is the lowest energy pathway connecting a chemical reactant to a chemical product).
In the field of computational chemistry, energy minimization (also called energy optimization, geometry minimization, or geometry optimization) is the process of finding an arrangement in space of a collection of atoms where, according to some computational model of chemical bonding, the net inter-atomic force on each atom is acceptably close to zero and the position on the potential energy ...
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.
In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one point, somewhere between them, at which the slope of the tangent line is zero. Such a point is known as a stationary point. It is a point at which the first ...
Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative , if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.
The charges must have a spherically symmetric distribution (e.g. be point charges, or a charged metal sphere). The charges must not overlap (e.g. they must be distinct point charges). The charges must be stationary with respect to a nonaccelerating frame of reference. The last of these is known as the electrostatic approximation. When movement ...