Search results
Results From The WOW.Com Content Network
They test your brain and critical thinking skills, provide some constructive, educational fun, and provide tangible examples of math lessons you’ll actually use in real life. Math puzzles come ...
Some math problems have been challenging us for centuries, and while brain-busters like these hard math problems may seem impossible, someone is bound to solve ’em eventually. Well, m aybe .
log(8) = log(2 × 2 × 2) = log(2) + log(2) + log(2) ~ .90; log(9) = log(3 × 3) = log(3) + log(3) ~ .96; log(10) = 1 + log(1) = 1; The first step in approximating the common logarithm is to put the number given in scientific notation. For example, the number 45 in scientific notation is 4.5 × 10 1, but one will call it a × 10 b. Next, find ...
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.
The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time), an algorithm can also find that solution quickly. Since the former describes the class of problems termed NP, while the latter describes P, the question is equivalent to asking whether all problems in NP are ...
Such questions are usually more difficult to solve than regular mathematical exercises like "5 − 3", even if one knows the mathematics required to solve the problem. Known as word problems , they are used in mathematics education to teach students to connect real-world situations to the abstract language of mathematics.
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...