When.com Web Search

  1. Ad

    related to: derivative fractional order systems examples problems

Search results

  1. Results From The WOW.Com Content Network
  2. Fractional-order system - Wikipedia

    en.wikipedia.org/wiki/Fractional-order_system

    By applying a Laplace transform to the LTI system above, the transfer function becomes = () = = =For general orders and this is a non-rational transfer function. Non-rational transfer functions cannot be written as an expansion in a finite number of terms (e.g., a binomial expansion would have an infinite number of terms) and in this sense fractional orders systems can be said to have the ...

  3. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    In 2013–2014 Atangana et al. described some groundwater flow problems using the concept of a derivative with fractional order. [51] [52] In these works, the classical Darcy law is generalized by regarding the water flow as a function of a non-integer order derivative of the piezometric head. This generalized law and the law of conservation of ...

  4. Fractional-order integrator - Wikipedia

    en.wikipedia.org/wiki/Fractional-order_integrator

    To compute an integer order derivative, the weights in the summation would be zero, with the exception of the most recent data points, where (in the case of the first unit derivative) the weight of the data point at t − 1 is −1 and the weight of the data point at t is 1. The sum of the points in the input function using these weights ...

  5. Riemann–Liouville integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Liouville_integral

    In mathematics, the Riemann–Liouville integral associates with a real function: another function I α f of the same kind for each value of the parameter α > 0.The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, I α f is an iterated antiderivative of f of order α.

  6. Grünwald–Letnikov derivative - Wikipedia

    en.wikipedia.org/wiki/Grünwald–Letnikov...

    In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.

  7. Fractional Chebyshev collocation method - Wikipedia

    en.wikipedia.org/wiki/Fractional_Chebyshev...

    The fractional Chebyshev collocation (FCC) method [1] is an efficient spectral method for solving a system of linear fractional-order differential equations (FDEs) with discrete delays. The FCC method overcomes several limitations of current numerical methods for solving linear FDEs.

  8. Fractional-order control - Wikipedia

    en.wikipedia.org/wiki/Fractional-order_control

    Fractional-order control (FOC) is a field of control theory that uses the fractional-order integrator as part of the control system design toolkit. The use of fractional calculus can improve and generalize well-established control methods and strategies. [1] The fundamental advantage of FOC is that the fractional-order integrator weights ...

  9. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.