Search results
Results From The WOW.Com Content Network
Loosely speaking, a function is Riemann integrable if all Riemann sums converge as the partition "gets finer and finer". While not derived as a Riemann sum, taking the average of the left and right Riemann sums is the trapezoidal rule and gives a trapezoidal sum. It is one of the simplest of a very general way of approximating integrals using ...
A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.
A sequence of Riemann sums over a regular partition of an interval. The number on top is the total area of the rectangles, which converges to the integral of the function. The partition does not need to be regular, as shown here. The approximation works as long as the width of each subdivision tends to zero.
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...
A Riemann sum of a function f with respect to such a tagged partition is defined as ∑ i = 1 n f ( t i ) Δ i ; {\displaystyle \sum _{i=1}^{n}f(t_{i})\,\Delta _{i};} thus each term of the sum is the area of a rectangle with height equal to the function value at the chosen point of the given sub-interval, and width the same as the width of sub ...
For any given partition, the upper Darboux sum is always greater than or equal to the lower Darboux sum. Furthermore, the lower Darboux sum is bounded below by the rectangle of width (b−a) and height inf(f) taken over [a, b]. Likewise, the upper sum is bounded above by the rectangle of width (b−a) and height sup(f).
Roughly speaking, one chooses a sequence of partitions of the interval from 0 to t and constructs Riemann sums. Every time we are computing a Riemann sum, we are using a particular instantiation of the integrator. It is crucial which point in each of the small intervals is used to compute the value of the function. The limit then is taken in ...
The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for