Search results
Results From The WOW.Com Content Network
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them.
Since the root of unity is a root of the polynomial x n − 1, it is algebraic. Since the trigonometric number is the average of the root of unity and its complex conjugate , and algebraic numbers are closed under arithmetic operations, every trigonometric number is algebraic. [ 2 ]
[1] [10] Another precarious convention used by a small number of authors is to use an uppercase first letter, along with a “ −1 ” superscript: Sin −1 (x), Cos −1 (x), Tan −1 (x), etc. [11] Although it is intended to avoid confusion with the reciprocal, which should be represented by sin −1 (x), cos −1 (x), etc., or, better, by ...
For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have < <. For negative values of θ we have, by the symmetry of the sine function
Tan-1, TAN-1, tan-1, or tan −1 may refer to: tan −1 y = tan −1 ( x ), sometimes interpreted as arctan( x ) or arctangent of x , the compositional inverse of the trigonometric function tangent (see below for ambiguity)
Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.
In the diagram, such a circle is tangent to the hyperbola xy = 1 at (1,1). The yellow sector depicts an area and angle magnitude. The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a hyperbolic sector with area corresponding to hyperbolic angle magnitude.
Many texts write φ = tan −1 y / x instead of φ = atan2(y, x), but the first equation needs adjustment when x ≤ 0. This is because for any real x and y, not both zero, the angles of the vectors (x, y) and (−x, −y) differ by π radians, but have the identical value of tan φ = y / x .