Search results
Results From The WOW.Com Content Network
A specific latent heat (L) expresses the amount of energy in the form of heat (Q) required to completely effect a phase change of a unit of mass (m), usually 1 kg, of a substance as an intensive property: =. Intensive properties are material characteristics and are not dependent on the size or extent of the sample.
Molar specific heat capacity (isochoric) C nV = / J⋅K⋅ −1 mol −1: ML 2 T −2 Θ −1 N −1: Specific latent heat: L = / J⋅kg −1: L 2 T −2: Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient
The amount of energy required for a phase change is known as latent heat. The "cooling rate" is the slope of the cooling curve at any point. Alloys have a melting point range. It solidifies as shown in the figure above. First, the molten alloy reaches to liquidus temperature and then freezing range starts.
Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
The point's name derives from the graph (pictured) that results from plotting the specific heat capacity as a function of temperature (for a given pressure in the above range, in the example shown, at 1 atmosphere), which resembles the Greek letter lambda. The specific heat capacity has a sharp peak as the temperature approaches the lambda point.
In physics and engineering contexts, especially in the context of diffusion through a medium, it is more common to fix a Cartesian coordinate system and then to consider the specific case of a function u(x, y, z, t) of three spatial variables (x, y, z) and time variable t. One then says that u is a solution of the heat equation if
The Mayer relation states that the specific heat capacity of a gas at constant volume is slightly less than at constant pressure. This relation was built on the reasoning that energy must be supplied to raise the temperature of the gas and for the gas to do work in a volume changing case.